

Albert-Ludwigs-Universität Freiburg

Dr. Wei Xu Jia Mao, Prof. Gero Becker, Prof. Marie-Pierre Laborie Alumnikolloquium 24.07.2014

Environmental Sustainability

Perform a Life Cycle Assessment (LCA)

◆ LCA is a useful method to evaluate environmental impacts for a certain *product, process or activity*

LCA implementation steps

A wide range of wood utilization

THE CHILL STATE OF THE CHILL STA

- Wood buildings
- Furniture
- Pulp & paper
- Bio-energy
- Wood-based biomaterials...

LCA on Wood pulp
Since 2009

LCA on Nanocellulose Since 2013

Part 1. LCA on wood pulp

A case study of wood pulp from eucalyptus plantations in South China

Albert-Ludwigs-Universität Freiburg

Eucalyptus plantation as pulpwood supply

(China State Forestry Administration, 2002; China National Development and Reform Commission, 2004 and 2005; He and Barr, 2004; Barr and Cossalter, 2004; Wang and Suo., 2009)

Cradle-to-gate perspective

Raw material supply from eucalyptus plantaion

Wood pulp Production

Q: What are the environmental impacts related to wood pulp production?

Q:What are the "hot-spot" processes leading to higher environmental burdens?

LCA implementation steps

BURG

Case study profiles

Location of the selected case study

Plantation operator (since 1996)

- ➤ 40,000 ha eucalyptus plantations
- > a full range operations
- ➤ 200+ employees
- > data collection: 2009

Principal processes (forest + transport)

Nursery

Seedling breeding

Silviculture operations

Planting Fertilization

Tending

Chain saw harvest

Logging

Skidding

Extraction

Loading

Transport

Out of forest

Delivery to mill

Principal processes (pulp mill)

System modeling with Umberto ® **Seedling production Transport Plantation** management **Pulp mill** 1313

Inventory analysis results

> Input and output refer to the *functional unit* of 1 air-dried ton pulp

EMISSIONS TO AIR

• GHGs

- 611 kg
- Biogenic CO₂
- 2,081 kg
- Other pollutants
- 15 kg

RAW MATERIALS

- •Fertilizers 143 kg
- •Chemicals 212 kg
- •Water 36 *m*³

ENERGY

- •Fossil fuels 254 kg
- •Electricity* 8 kwh

Carbon sequestration

• CO₂ uptake 31 ton

Cradle-to-gate perspective

EMISSIONS TO WATER

- Effluent $40 m^3$
- Pollutant discharge 38 kg

SOLID WASTE

• Landfills 86 kg

PRODUCT

•Market pulp 1 ton

BY-PRODUCT

•Electricity to grid 432 kwh

Impact assessment results

> Results refer to the *functional unit* of 1 air-dried ton market pulp

SELECTED IMPACT CATEGORY	This study	In Thailand (Jawjit, 2006)		In Spain (Gonzalez et al.,2009)
Acidification (kg SO ₂ -eq.)	15.45	> 5.96	>	2.83
Eutrophication (kg PO ₄ ³⁻ -eq.)	5.87	> 3.50	>	0.70
Global warming (kg CO ₂ -eq.)	2,178.08	> 1,584.33	>	431.30
Human toxicity (kg C ₆ H ₄ Cl ₂ -eq.)	16.40	> 11.42	<	39.19
Fossil fuel depletion (GJ)	17.26	-		-

Hot-spot processes

Relative contributions of principal processes to total environmental impacts

Key findings

- ◆ Fertilization operations of the forest subsystem should be a concern for future eucalyptus plantation management in China
- Optimizations of on-site **supportive units** of chemical recovery, CHP plant and water treatment plant should be taken to reduce the impact of the pulp mill subsystem
- ◆ Supply of raw materials and energy should be a concern for all the involved activities along the entire forest-to-pulp supply chain

Part 2. LCA on Nanocellulose

An innovative route to produce cellulose nanocrystals (CNCs) with ionic liquid

A THE PROPERTY OF THE PARTY OF

Albert-Ludwigs-Universität Freiburg

Nanocellulose from wood

- Cellulose is the most abundant biopolymers on earth
- Nanocellulose is a promising bio-based material for many high performance applications
- Environmental impacts remain little understood

Cellulose Nanocrystals (CNCs)

CNCs are nano-scale highly crystalline materials obtained from a broad range of cellulose sources by *acid hydrolysis*

AFM height image of CNCs (from Mao Jia)

Many desired properties

- High strength and stiffness (high Young's Modulus (=steel))
- Low weight
- **Biodegradable and renewable**
- Reinforcement in polymer-nanocomposites

Ionic liquid route by Mao et al. (2013)

Centrifugation (12000rpm, 10min)

Sediment

Microcrystalline cellulose (MCC)

[Bmim]HSO₄/H₂O

Traditional route	IL route (Mao et al, 2013)
- strong acid (H ₂ SO ₄)	+ green solvent
- corrosive	+ recoverable, reuseable
- low yield	+ higher yield

Supernatant

CNCs

System modeling with Umberto ®

Functional unit= 10 g CNCs at lab gate

Impact assessment results (Eco-indicator 99)

Hot-spot process leading to higher environmental impacts

Possible comparative LCAs:

- IL route vs. traditional routes (e.g. with H₂SO₄)
- MCC vs. other starting materials
- Optimization scenarios

Acknowledgement

Prof. Becker for supervision and support

Prof. Laborie for supervision and support

The LGFG and the STAY! scholarship for my study and research

FOBAWI and BioMAT group members

Thank you for your attention!

Contact:

wei.xu@fobawi.uni-freiburg.de

0761-203 9240

Albert-Ludwigs-Universität Freiburg

Literature

- Barr, C. and C. Cossalter. 2004. China's development of a plantation-based wood pulp industry: Government policies, financial incentives, and investment trends. *Int. Forestry Rev.* 6(3–4):267–281.
- China State Forestry Administration (2002), The fast-growing high-yield timber forest base development program (in Chinese)
- China National Development and Reform Commission (2004), the program of plantation-pulp-paper integration establishement for the 10th five-year and special arrangement for 2010 (in Chinese)
- China National Development and Reform Commission. 2005. Establishment of the fast-growing high-yield plantation base in emphasized regions. (In Chinese.) http://www.sdpc.gov.cn/zdxm/t20050715_37368.htm.
- Di, X., Z. Nie, and T. Zuo. 2005. Life cycle emission inventories for the fuels consumed by thermal power in China. *China Environ. Sci.*. 25(5):632–636. (In Chinese.)
- Dias, A. C., M. Louro, L. Arroja, and I. Capela. 2006. Evaluation of the environmental performance of printing and writing paper using life cycle assessment. *In:* Proceedings of the 1st International Conference on Environmentally-Compatible Forest Products, September 22–24, 2004, Oporto, Portugal
- European Environment Agency (EEA). 2006. Atmospheric emissions inventory guidebook. http://www.eea.europa.eu/publications/EMEPCORINAIR4
- He and Barr (2004), China's pulp and paper sector: an analysis of supply-demand and medium term projections
- Intergovernmental Panel on Climate Change (IPCC). 2006. Guidelines for national greenhouse gas inventories. IPCC, Geneva.
- International Organization for Standardization (ISO). 2006. Environmental management-life cycle assessment principles and framework. Standard 14040. ISO, Geneva.
- Institute of Environmental Sciences (CML) . 2010. Impact assessment spreadsheet version 3.9. Center of Environmental Science, Leiden University, Leiden, The Netherlands
- National Councial for Air and Stream Improvement (NCASI). 2005. Calculation tools for estimating GHGs emissions from pulp and paper mills (version 1.1)
- Jawjit, W., C. Kroeze, W. Soontaranun, and L. Hordijk. 2006. An analysis of the environmental pressure exerted by the eucalyptus-based Kraft pulp industry in Thailand. *Environ. Develop. Sustain.* 8:289–311.
- Yuan, B., Z. Nie, X. Di, and T. Zuo. 2006a. Life cycle assessment of fossil fuels production in China (1): Energy sources consumption and direct pollutant emissions. *Modern Chem. Ind.* 26(3):59–64. (In Chinese.)
- Yuan, B., Z. Nie, X. Di, and T. Zuo. 2006b. Life cycle assessment of fossil fuels production in China (2): Final life cycle inventories. *Modern Chem. Ind.* 26(4):59–61. (In Chinese.)
- Wang and Suo (2009). Status quo and development trend of the forest -paper integration projects (in Chinese)