Summerschool

"Between Protection and Production – advanced concepts and solutions of a sustainable utilization of forest resources"

SUSTAINABLE DEVELOPMENT OF FOREST-BASED BIOENERGY PROJECTS IN THE MEDITERRANEAN REGION

Prof. Dr. Jose-Vicente Oliver TU Valencia (UPV DIRA-FBI) joolvil@upv.es

- 1. INTRODUCTION
- 2. SUSTAINABLE DEVELOPMENT OF THE FOREST-BASED BIOENERGY CHAIN UNDER MEDITERRANEAN CONDITIONS
- 3. FOREST-BASED BIOENERGY POTENTIAL IN THE COMMUNITY OF VALENCIA
- 4. INNOVATION CHALLENGES AND INTEGRAL BIOENERGY PROJECTS

1st RISK:

PROGRESSIVE RURAL EXODUS AND ABANDONMENT OF FORESTRY

2nd RISK:

EFFECTS OF CLIMATE CHANGE: HOT SUMMERS AND DRY WINTERS

3rd RISK:

LARGE FOREST FIRES

Forest fires in dependance on climate change in the Western Mediterranean basin (Pausas 2012)

INTRODUCTION

4th RISK/OPPORTUNITY: CASCADE USE OF WOOD

Static and dinamic carbon sequestration

CONCLUSIONS:

KEY SUSTAINABILITY CHALLENGES FOR FOREST-BASED BIOENERGY UNDER MEDITERRANEAN CONDITIONS AT LOCAL LEVEL

SUSTAINABILITY

AS BASIS FOR A LOW CARBON AND KNOWLEDGE-DRIVEN BIOECONOMY

ENVIRONMENTAL BENEFITS

- Extraction of forest residual biomass
- Active fire prevention silviculture: reduction of bushfire risk
- Improved forest ecosystems, soil protection, water regime and biodiversity
- © Natural regeneration and increased CO₂ fixation
- © Production and use of bioenergy at local level
- Substitution of fossil energy sources:
 reduction of CO₂ emissions
- Active mitigation of climate change

DEVELOPMENT OF LOCAL ECONOMIES

- Valorization of non-used forest residues: from waste to product
- Forest companies: forestry planning and management
- Harvesting companies: optimization and technological development of harvesting and logistics processes
- Local investors for bioenergy industrial projects at small and medium scale
- © Local bioenergy distribution: thermal, electrical or biofuels
- © SRCs as complementary energy crops at marginal agricultural land
- Integrated industrial projects across the entire bioenergy value chain in rural areas at local level

SOCIAL IMPACTS

- Direct employment: forest management, harvesting and logistic operations, energy conversion processes, energy distribution etc.
- Indirect employment in rural areas: services (2x1)
- © Education and training in a future-oriented sector: specialised skills and knowledge transfer
- Active contribution to a KBBE in Mediterranean rural areas

INTRODUCTION

CONCLUSIONS:

KEY SUSTAINABILITY CHALLENGES FOR FOREST-BASED BIOENERGY UNDER MEDITERRANEAN CONDITIONS AT LOCAL LEVEL

- 1. RATIONALE USE OF FOREST RESSOURCES: from waste to product (market)
- 2. ENERGY RECOVERY OF LIGNOCELLULOSIC WASTE: optimisation of contribution to mitigation of climate change
- 3. INTEGRAL VALORISATION PROJECTS AT LOCAL/SUBREGIONAL SCALE: carbon emmisions minimisation, economic optimisation and rural development

BIOENERGY

development in CV based on

huge potential of BIOMASS SOURCES in rural areas

FOREST-BASED BIOENERGY

BIOENERGY

development in CV based on

huge potential of BIOMASS SOURCES in rural areas

BIOENERGY development in CV based on

huge potential of BIOMASS SOURCES in rural areas

BIOENERGY development in CV based on

huge potential of BIOMASS SOURCES in rural areas

FOREST-BASED BIOMASS

• >50% forest land

BIOENERGY development in CV based on

huge potential of BIOMASS SOURCES in rural areas

FOREST-BASED BIOMASS

•>50% forest land

increasing forest area and stocking volume in large unmanaged forests

BIOENERGY development in CV based on

huge potential of BIOMASS SOURCES in rural areas

FOREST-BASED BIOMASS

•>50% forest land

increasing forest area and stocking volume in large unmanaged forests

•fire prevention silviculture

BIOENERGY

BIOENERGY development in CV based on

huge potential of BIOMASS SOURCES in rural areas

Tipo de biomasa	Procedencia	Humedad (base húmeda) en el momento de la corta.	Poder Calorifico Superior Humedad=0% MJ/kg (valores medios)	Poder Calorífico Inferior (PCI) Kcal / kg (valores medios)
P. pinaster (ramas)	Varias	35-50 (42.5)	21.1	2465.2597
P. pinaster (madera)	Varias	40-50 (45)	20.7	2280.1338
P. pinaster (corteza)	Varias	25-40 (32.5)	21.0	2979.6299
P. halepensis (ramas)	Zaragoza	30-45 (37.5)	20.8	2685.7503
P halepensis (madera)	Zaragoza	38-48 (43)	20.4	2343.5090
P halepensis (corteza)	Zaragoza	25-40 (32.5)	20.0	2818.5320
P. sylvestris (ramas corta)	Varias	35-50 (42.5)	21.1	2465.2597
P. pinea (árbol entero, claras)	Ciudad Real	40-48 (44)	20.2	2265.4013
P. nigra (ramas corta)	Varias	35-50 (42.5)	20.6	2396.6439
P. radiata (ramas corta)	Pais Vasco	38-50 (44)	20.5	2305.4968
E.globulus(ramas)	Asturias	50-55 (52.5)	20.2	1832.7511
E.globulus(madera)	Asturias	55-65 (60)	19.5	1384.1752
E.globulus(corteza)	Asturias	45-55 (50)	15.9	1446.8747
F silvatica (madera)	Varias	40	19.2	2325.804
Castanea sativa (madera)	Varias	40	19.8	2411.722
Populus sp. (ramas corta)	Varias	40-50 (45)	19.4	2109.4894
Q. pyrenaica(ramas sin hojas)	Soria	35-45 (40)	19.2	2325.804
Q. pyrenaica(rollo cc)	Soria	38-50 (44)	19.1	2118.3843
Q. petraea (madera)	Varias	40	19.3	2340.123
Q. ilex (hojas)	Varias	40	19.3	2340.123
Q. ilex (ramillas)	Varias	40	18.5	2225.565
Q. ilex (madera)	Varias	40	18.2	2182.605
O. ilex (desbroce)	Varias	40	19.2	2325.803

FOREST-BASED BIOMASS

- •>50% forest land
- increasing forest area and stocking volume in large unmanaged forests
- •fire prevention silviculture
 - high calorific power

development of forest-based bioenergy value chain at local level in Mediterranean rural areas based on REGIONAL CO-OPERATION

development of forest-based bioenergy value chain at local level in Mediterranean rural areas based on REGIONAL CO-OPERATION

UNIVERSITIES

RESEARCH CENTRES

FOREST OWNERS

SMEs

NGOs

PUBLIC ADMINISTRATIONS

etc.

development of forest-based bioenergy value chain at local level in Mediterranean rural areas based on REGIONAL CO-OPERATION

UNIVERSITIES

RESEARCH CENTRES

FOREST OWNERS

SMEs

NGOs

PUBLIC ADMINISTRATIONS

etc.

development of forest-based bioenergy value chain at local level in Mediterranean rural areas based on REGIONAL CO-OPERATION

UNIVERSITIES

RESEARCH CENTRES

FOREST OWNERS

SMEs

NGOs

PUBLIC ADMINISTRATIONS

etc.

FOREST SECTOR

development of forest-based bioenergy value chain at local level in Mediterranean rural areas based on REGIONAL CO-OPERATION

UNIVERSITIES

RESEARCH CENTRES

FOREST OWNERS

SMEs

NGOs

PUBLIC ADMINISTRATIONS

etc.

FOREST SECTOR

WG BIOENERGY

development of forest-based bioenergy value chain at local level in Mediterranean rural areas based on EU CO-OPERATION

JSTAINABLE DEVELOPMENT

development of forest-based bioenergy value chain at local level in Mediterranean rural areas based on EU CO-OPERATION

Cost E9 "LCA of forestry and forests products" 2000-2005

Cost E31 "Management of Recovered Wood" 2004-2008

INTERREG IIIC PERSPECTIVE 2005-2008

LIFE+ BEST4VARIOUSE 2009-2012

LIFE+ FIRE PREVENTION & BIOENERGY 2010-2013

MED PROFORBIOMED 2011-2014

+ ERASMUS + LEONARDO

development of forest-based bioenergy value chain at local level in Mediterranean rural areas based on SUSTAINABILITY

FOREST-BASED BIOENERGY POTENTIAL

PATFOR (Oliver et al. 2013):

Forest (and agricultural) biomass potential: 1,2 Mt/y = 260.000 toe

5% of regional energy demand

750.000 CO₂ t/y reduction of emissions

Additional potential of lignocellulosic energy crops (SRC)

Direct+indirect employment in rural areas

FOREST-BASED BIOENERGY POTENTIA IN THE COMMUNITY OF VALENCIA

```
8-10 industrial CHP plants at small scale (2 MW, 20.000 t/y)
```

10 x 15 M Kweh/y = 150 Mio Kweh/y x 0,14€/KWeh = 21 Mio €/y 10 x 40 M KWth/y = 400 Mio KWth/y x 0,03€/KWth = 12 Mio €/y

10-15 district heatings (1 MW, 10.000 t/y)

10 x 40 M KWth/y = 400 Mio KWth/y x 0,03€/KWth = 12 Mio €/y

8-10 pellet plants (10.000 t/y)

10 x 10.000t/y pellets x 200 €/t = 20 Mio €/y

INDUSTRIAL/VALORIZATION PROJECTS

8-10 industrial CHP plants at small scale (2 MW, 20.000 t/y)

10 x 15 M Kweh/y = 150 Mio Kweh/y x 0,14€/KWeh = 21 Mio €/y

10 x 40 M KWth/y = 400 Mio KWth/y x 0,03€/KWth = 12 Mio €/y

10-15 district heatings (1 MW, 10.000 t/y)

10 x 40 M KWth/y = 400 Mio KWth/y x 0,03€/KWth = 12 Mio €/y

8-10 pellet plants (10.000 t/y) 10 x 10.000t/y pellets x 200 €/t = 20 Mio €/y

INTEGRAL FOREST-BASED BIOMASS MODEL

FBiomass

private municipal public

ABiomass

private

Energy crops

Private

Urban and industrial waste biomass

municipial private

Direct employment (ex. integral project in ENGUERA)

9.000 ha municipal forests (Municipality of Moixent)	
13.000 ha private forests	
15.000 ha private agricultural land (olive and almond crops)	
500 ha SRCs as energy crops	
Approx. 30.000 t/y	
Forest planning (inventory and management plans,	
harvesting annual plans)	2
Harvesting operations and in-situ chipping	16
Transport and logistics	6
CHP plant (2MW) + district heating	11
Pellet plant	9
TOTAL	44
+ INDIRECT EMPLOYMENT (x1,8)	

17.000 ha public forests (Canal de Navarrés)

12.000 ha municipal forests (Municipality of Enguera)

1. Biomass oriented forest management plans for sustained raw material supply

SUSTAINABLE DEVELOPMENT INTEGRAL FOREST-BASED BIO INDUSTRIAL PROJECTS

Bioenergy oriented approach for harvesting plans in pure stands of *Pinus halepensis* (LIFE BIOENERGY AND FIRE PREVENTION 2013)

- 1. Biomass oriented forest management plans for sustained raw material supply
- 2. Optimisation of harvesting and logistic costs

SUSTAINABLE DEVELOPMENT NTEGRAL FOREST-I NDUSTRIAL PROJE

15 - 20 %

35 - 40 %

~ 40 %

60 - 70 %

		HOURLY	EFFECTIVE WORK-	PRODUCTIVITY	UNIT COST
HARVESTING	WORKING OPERA-	COST	ING TIME		
SYSTEM	TIONS	2000	4000000000	No. (45),000 (0.000000
		(€/h)	(h/t)	(t/h)	(€/t)
	FELLING				
	with chainsaw	15,00 €/h	0,732 h/t	1,366 t/h	10,98 €/t
	STIHL 045ii	13,00 €/11	0,732 11/1	1,300 (/11	10,56 €/1
	SKIDDING with forwarder VAL-				
	MET 860	29,50 €/h	0,752 h/t	1,330 t/h	22,18 €/t
	CHIPPING		, , , , ,	, ,	
FULL-TREE	with mobile chipper				
HARVESTING	STARK SH4585	95,00 €/h	0,050 h/t	20 t/h	4,75 €/t
	TRANSPORT				
	with multi-lift truck 25t				F 00 6/4
	(25 Km)				5,00 €/t
	TOTAL				
	TOTAL				42,91 €/t
2-					42,31 €/1
E	FELLING				 /
	with chainsaw				
	STIHL 045ii	15,00 €/h	1,124 h/t	0,890 t/h	16,85 €/t
	DEBRANCHING				×
	with chainsaw				
	STIHL 045ii	15,00 €/h	1,040 h/t	0,960 t/h	15,60 €/t
	SKIDDING				
	with forwarder VAL-	29,50 €/h	0,976 h/t	1,025 t/h	28,79 €/t
3	MET 860 CHIPPING	23,30 €/11	0,370 11/1	1,025 (/11	28,73 €/1
INTEGRATED	of crown material				
HARVESTING	remained at forest	45,00 €/h	0,170 h/t	4,170 t/h	-
	CHIPPING				
	with mobile chipper		2010-0-2015 - 300000	anner van	100 100 100 100 100
	STARK SH4585	95,00 €/h	0,050 h/t	20 t/h	4,75 €/t
	TRANSPORT				
	with multi-lift truck 25t				E 00 6/+
	(25 Km)				5,00 €/t
	TOTAL				
	IOTAL				70,99 €/t
					10,55 6/1

Current tests with harvester for medium-aged reforested stands and with multitree harvester for young natural regenerated stands

- 1. Biomass oriented forest management plans for sustained raw material supply
- 2. Optimisation of harvesting and logistic costs
- 3. Appropriated CHP technologies for Mediterranean biomass (combustion, gasification)

Fluid bed experimental gasificator (UPV – IIE)

Net calorific value of *Rosmarinus* officinalis in combustion tests (MJ/Kg)

- 1. Biomass oriented forest management plans for sustained raw material supply
- 2. Optimisation of harvesting and logistic costs
- 3. Appropriated CHP technologies for Mediterranean biomass (combustion, gasification)
- 4. High qualitative biofuels (pellets, HTC, 2nd generation biofuels)

Propiedades del análisis	Unid.	Parámetros Técnicos	Cumplimiento de normas				
			Naranjo	Olivo	Almendro	Paulonia	Encina
Propiedades físicas							
Humedad	(%)	≤10	-	-	-	-	-
Densidad	Kg/m³	≥600¹	٧	٧	٧	x	٧
Propiedades energe	éticas						
Cenizas	(%)	≤1,5¹	x	x	V	٧	x
PC	MJ/kg	16,3≥Q≤19 ⁵ 1	х	٧	٧	٧	√
Elementos químico	S						
Nitrógeno (N)	%	≤0,5¹	x	٧	٧	٧	√
Azufre (S)	%	<0,031	x	v	٧	٧	٧
Arsénico (As)	mg/Kg	≤1,0¹	٧	٧	٧	٧	٧
Cromo (Cr)	mg/Kg	≤10,0¹	٧	٧	٧	٧	٧
Plomo (PI)	mg/Kg	≤10,0¹	٧	٧	٧	٧	٧
Mercurio (Hg)	mg/Kg	≤0,1¹	٧	٧	٧	٧	٧
Níquel (Ni)	mg/Kg	≤10,0¹	٧	٧	٧	٧	٧
Zinc (Zn)	mg/Kg	≤10,0¹	٧	٧	٧	٧	٧

Pellet quality requirements (EN+) of different lignocellulosic raw materials

HTC tests with several forest waste material in INGELIA S.L (Náquera)

$$ICP = \frac{K1 * PCS + K2 * D + K3 * (1 - M)}{Hh * FR}$$

ICP	EN+	НТС
	0,289	0,545

Calorific Quality Index of HTC pellets

Durability of HTC pellets

- 1. Biomass oriented forest management plans for sustained raw material supply
- 2. Optimisation of harvesting and logistic costs
- 3. Appropriated CHP technologies for Mediterranean biomass (combustion, gasification)
- 4. High qualitative biofuels (pellets, HTC, 2nd generation biofuels)
- 5. Energy contracting at local scale

- 1. Biomass oriented forest management plans for sustained raw material supply
- 2. Optimisation of harvesting and logistic costs
- 3. Appropriated CHP technologies for Mediterranean biomass (combustion, gasification)
- 4. High qualitative biofuels (pellets, HTC, 2nd generation biofuels)
- 5. Energy contracting at local scale
- 6. Optimisation of energy distribution channels (thermal energy in district or industrial heating systems)

Small scale district heating Enguera (0,8 MW)

- 1. Biomass oriented forest management plans for sustained raw material supply
- 2. Optimisation of harvesting and logistic costs
- 3. Appropriated CHP technologies for Mediterranean biomass (combustion, gasification)
- 4. High qualitative biofuels (pellets, HTC, 2nd generation biofuels)
- 5. Energy contracting at local scale
- 6. Optimisation of energy distribution channels (thermal energy in district or industrial heating systems)
- 7. Adequate lignocellulosic energy crops in SRC

Experimental plots of *Paulownia* SRC in several areas of the Community of Valencia

Zona Geográfica	Ecuación (MJ/árbol)	Ecuación (GJ/ha)
zona interior	= 4,8648 DAC2 - 15,5676 DAC + 8,7568	= 9,1966 DAC 2 - 29,429 DAC + 16,5538
zona costera 1	= 20,919 DAP2 - 410,11 DAP + 2.171,2	= 20,722 DAP 2 - 406,253 DAP + 2.150,8
zona costera 2	= 3,8919 DAP2 - 25,2973 DAP + 54,9729	= 3,8553 DAP 2 - 25,0595 DAP + 54,4562

7	Pot. energético	Pot. energético	
Zona Geográfica	(MJ/árbol)	(GJ/ha)	
zona interior	39,4	55,6	
zona costera 1	191,2	189,4	
zona costera 2	247,6	245,3	

Source: Fernandez Puratich and Oliver Villanueva 2014; CO2DECIDE

- 1. Biomass oriented forest management plans for sustained raw material supply
- 2. Optimisation of harvesting and logistic costs
- 3. Appropriated CHP technologies for Mediterranean biomass (combustion, gasification)
- 4. High qualitative biofuels (pellets, HTC, 2nd generation biofuels)
- 5. Energy contracting at local scale
- 6. Optimisation of energy distribution channels (thermal energy in district or industrial heating systems)
- 7. Adequate lignocellulosic energy crops in SRC
- 8. INVESTMENT

Thank you!